Heat Treated – Phytosanitized & Densified Biomass Chips

Transforming Traditional Supply Processes – Toward Carbon Reduction Goals

A Responsible & Sustainable Biomass Supply Chain

- Anyone can sell wood chips!
- However, we provide a Renewable Energy Alternative/Supplemental Commodity.
- One that is Environmentally and Financially Sustainable.
 - Enabling CHP buyers to strive for and reach Carbon Neutrality Goals
 - > By, blending their Procurement needs with Pellets and $\mathbf{E} = \mathbf{MC}^3$. Energy Chips

Let's Begins with Shared Duties and Commitments attainable through Alliances

□ We have a Shared Duty to:

□ Manage and lead in our companies and our industry;

□ Promote the success of our companies and our industry;

□ Act responsibly and sustainably at every level of our operations.

This shared commitment will effectively promote and provide for Reduced Carbon Emissions

Environmental and Social Aspects

Identify - and Reduce - Risks or Exposure Related to:

- 1.) Perceived Over-Cutting or Intrusive Harvesting of forests;
- 2.) Fiber Origination procure only from Well Managed and Properly Certified forests;
- 3.) GHG Emissions Reduction: move from Carbon Intensive Trucking to Rail Transportation;
- 4.) Secure Bankable Fiber Aggregate, Classify, Process and Ensure Quality Assurance;
- 5.) Meet all EU Import requirements Phytosanitation accomplished with no Fossil Fuel;
- 6.) Densify and Compact commodities for effective, efficient and low cost Material Handling;
- 7.) Costly Storage Buildings, Chip-Pile Management, Port Handling, Weather Climate Exposure;
- 8.) Ocean Freight cost containment to exceed Density/Stowage Efficiency and promote Alliances.

Adherence to the above will Guarantee Carbon Emission Reductions.

In 2019 a EU company consumed roughly <u>9 MMT</u> of wood pellets per year (or roughly <u>21 M-US tons</u> of raw wood chip fiber per year).

This requires active management and harvesting of <u>4,600 sq.</u> <u>miles</u> of forests or <u>2.9 m acres</u> Slightly smaller than Connecticut

Or, roughly <u>8,066 acres per day</u> to maintain operations.

https://wattsupwiththat.com/2019/02/07/the-obvious-biomass-emissions-error/

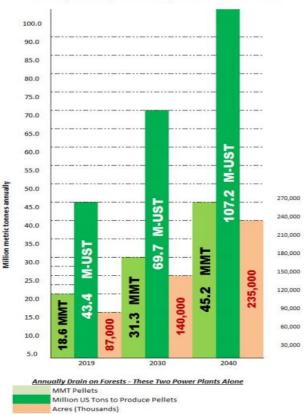
More than <u>70,000 US tons of wood</u> harvested <u>every day</u> from US forests = <u>2,333 Truck Load Movements per day</u>

https://wattsupwiththat.com/2013/11/09/wood-burning-power-plants-misguided-climate-change-solution/

Perceptions US-SE Based on 1 SE Based Company

US-SE region exported <u>9.6 MMT in 2019</u> = <u>22.4 M-US tons</u> of raw wood chip fiber.

US-SE region expected to export 13.6 MMT annually by 2030


At the time of this report in 2017 <u>80,000 acres</u> were being <u>harvested annually</u>.

By 2030 this will increase to 280,000 acres annually to keep up with demand.

"The use of wood and other biomass will <u>increase at an average</u> <u>annual</u> rate of <u>4.4 %</u> from 2014 through 2040".

U.S. Department of Energy, Energy Information Administration 2014 https://www.dogwoodalliance.org/wp-content/uploads/2017/08/Acres-of-Pellets-Fact-Sheet.pdf http://bit.ly/2tFsGSe

Note: Above examples do not reflect personal opinion on these two pellet related firms. The detaisl are from published reports and are only used to indicate what negative perception this can have.

Negative Perceptions

Surprise! Greedy Green Energy Corporatists are Clear Felling Protected Forests for Biomass

https://wattsupwiththat.com/2016/11/26/surprise-greedy-green-energy-corporatists-are-clear-felling-protected-forests-for-biomass/

The Obvious Biomass Emissions Error https://wattsupwiththat.com/2019/02/07/the-obvious-biomass-emissions-error/

A Trifecta of Green Lunacy: The law of unintended consequences kicks in

https://wattsupwiththat.com/2017/02/23/a-trifecta-of-green-lunacy-the-law-of-unintended-consequences-kicks-in/

Wood-burning power plants: Misguided climate change solution? https://wattsupwiththat.com/2013/11/09/wood-burning-power-plants-misguided-climate-change-solution/

Green Shock: Entire Forests Being Murdered to Produce Wood Pellet Biomass https://wattsupwiththat.com/2018/04/18/green-shock-entire-forests-being-murdered-to-produce-wood-pellet-biomass/

Hardwood forests cut down to feed [sic] Power plant, Channel 4 Dispatches claims https://theecologist.org/2018/apr/16/hardwood-forests-cut-down-feed-drax-power-plant-channel-4-dispatches-claims

Dangerous delusions: biomass is not a renewable energy source https://www.leonardodicaprio.org/dangerous-delusions-biomass-is-not-a-renewable-energy-source/

Negative Effects of Biomass

https://sciencing.com/negative-effects-biomass-19624.html

The biomass industry should come clean about its environmental impact https://assets.nrdc.org/sites/default/files/01_opener_biomass_video.mp4

False [Bad] News Travels Farther, Faster Than The Truth, MIT Study Finds https://www.wbur.org/commonhealth/2018/03/08/fake-news-twitter Word of Mouth 7 Times Faster - Social Media 1,000 Times Faster

 $\mathbf{E} = \mathbf{MC}$

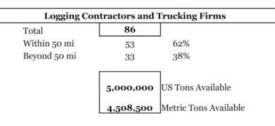
Responsibly: Ensure procurement strategy includes a mixture of fiber from sources not harvested. Blend residuals where ever possible.

2 Fiber Origination – procure only from well managed and properly certified forests

- Maine contains an estimated 17.6 million acres of forest land and covers 89.1% of the land area in the State. Most of the forest land, 95.3 %, is classified as timberland, meaning that it exceeds a minimum level of productivity and is not legislatively reserved from timber harvesting.
- Forest land, in Maine there is an estimated 23.9 billion live trees ≥1 in d.b.h.
- ➤ These trees have a total above ground biomass of 713.8 million tons and, looking at trees ≥5 in d.b.h., a total net volume of 27.3 billion ft3. The ratio of net growth to removals is 1.4:1.

Certificated Fiber: 1.55 M acres FSC; 2.83 M acres SFI and 3.26 M acres both FSC and SFI = 7.64 M acres total

https://www.fs.fed.us/nrs/pubs/ru/ru_fs160.pdf


Not depicted here is certificated forests in New Brunswick, Canada - and other Canadian Regions from ~ 2.5 m acres of Sustainably Managed land.

Sustainability Statistics Considering all Four (4) Mega Forest Regions

Certifications

	ajor Landowners Iarvest Acreage	
Certifications	Acres	Owners
SC	1,548,319	11
SFI	2,831,237	7
FSC & SFI	3,257,579	1
	7,637,135	19

Every landowner has cutting plans, sustainability plans and works with licensed, certified Forester to define annual cuts and to oversee all required to supply fiber from the land through licensed logging companies.

 $\mathbf{E} = \mathbf{MC}^3$

Sustainably: Ensure all fiber comes only from Sustainably Managed Forests – Secure all Necessary Certification Documentation

100% of raw **Biomass Fiber is acquired from sources including**; a.) logging residuals, b.) smalldiameter or low-value trees, c.) mill residues, and d.) other forms of wood waste.

- Residuals are most prevalent (slash, tops, limbs, other woody materials from conventional forest harvests.
- Logging residuals often comprise 25% 45% of harvested timber in northeastern forest operations.
- > Another low value source of woody biomass is short-rotation woody crops (SRWCs)
- Woody biomass removals can assist with other management goals such as timber stand improvement, reduction of insect, disease, or fire risk, and reduced use of herbicides and to increase wildlife habitat.
- > Biomass production from logging residuals is environmentally and fiscally responsible.
- > Hog Fuel is the lowest 'cost and value' fiber source in late 2020 to early 2021 ~ 600,000 MT Annually from Searsport, ME
- > 2 Replicable systems planned by 2021 will produce an additional 300,000 MT annually in St. Johns and New Haven CT

Sustainably: Ensure all fiber comes only from Sustainably Managed Forests – Secure all Necessary Certification Documentation

GHG – Emissions Reduction: move from Carbon Intensive Trucking – to Rail Transportation

Targeted Procurement = ~ 70% of Fiber Inbound by Rail and ~ 30% on Local Trucks

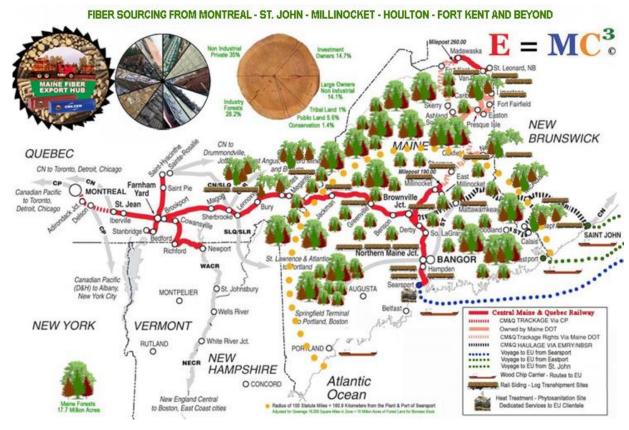
Log Iruck	300,000	US1 per yea	ar to racu	ny													
Distance Miles	Weight Cargo UST	Emission Factor	Grams of CO2	MT of	<u>S Per Loc</u> Mile Tra			<u>\$ Per</u> Truck	5	Per US Ton	-	§ for 300 USTPY	Annual Tons	Annual Loads	Grams of CO2	MT of CO2 Per Load	
200	30	161.8	970800	0.971	S	3.50	\$	700.00	\$	23-33	\$	7,000,000	300,000	10,000	9,708,000,000	9,708	100%
175	30	161.8	849450	0.849	S	3.50	\$	612.50	\$	20.42	\$	6,125,000	300,000	10,000	8,494,500,000	8,495	100%
150	30	161.8	728100	0.728	\$	3.50	\$	525.00	\$	17.50	\$	5,250,000	300,000	10,000	7,281,000,000	7,281	100%
125	30	161.8	606750	0.607	S	3.50	\$	437.50	\$	14.58	\$	4,375,000	300,000	10,000	6,067,500,000	6,068	100%
100	30	161.8	485400	0.485	S	3.50	\$	350.00	\$	11.67	\$	3,500,000	300,000	10,000	4,854,000,000	4,854	100%
75	30	161.8	364050	0.364	\$	3.50	\$	262.50	\$	8.75	\$	2,625,000	300,000	10,000	3,640,500,000	3,641	100%
50	30	161.8	242700	0.243	\$	3.50	\$	175.00	\$	5.83	\$	1,750,000	300,000	10,000	2,427,000,000	2,427	100%
25	30	161.8	121350	0.121	S	3.50	\$	87.50	\$	2.92	\$	875,000	300,000	10,000	1,213,500,000	1,214	100%
							A	lverage	\$	13.13	\$	3,937,500			Average	5,461	100%

Rail Car	300,000	UST per yea	r to Facil	ity											
Distance Miles	Weight Cargo UST	Emission Factor	Grams of CO2	MT of CO2	_	er Loaded Tile Rail	5	Per Rail Car	\$	Per US Ton			Annual Tons	Annual Loads	\$
200	75	22.9	343500	0.344	S	4.13	\$	\$25.00	S	11.00	s	3,300,000	300,000	4,000	
175	75	22.9	300563	0.301	S	4.50	\$	787.50	\$	10.50	\$	3,150,000	300,000	4,000	
150	75	22.9	257625	0.258	S	5.00	\$	750.00	\$	10.00	s	3,000,000	300,000	4,000	
125	75	22.9	214688	0.215	\$	5.70	\$	712.50	\$	9.50	\$	2,850,000	300,000	4,000	
100	75	22.9	171750	0.172	\$	6.75	\$	675.00	\$	9.00	\$	2,700,000	300,000	4,000	
75	75	22.9	128813	0.129	\$	8.50	\$	637.50	\$	8.50	\$	2,550,000	300,000	4,000	
50	75	22.9	85875	0.086		NA		NA		NA			300,000	4,000	
25	75	22.9	42937-5	0.043		NA		NA		NA			300,000	4,000	
									\$	9.75	\$	2,925,000	S 12		
Transition Poi	int						1.	iverage Savings		26%	\$	1,012,500 26%			

ads	Grams of CO2	MT of CO2 Per Load		
1,000	1,374,000,000	1,374	14%	
,000	1,202,250,000	1,202	14%	
1,000	1,030,500,000	1,031	14%	
1,000	858,750,000	859	14%	
1,000	687,000,000	687	14%	
1,000	515,250,000	515	14%	
1,000	343,500,000	344	14%	
1,000	171,750,000	172	14%	
	Average	773 GHG Reduced	14% 86%	

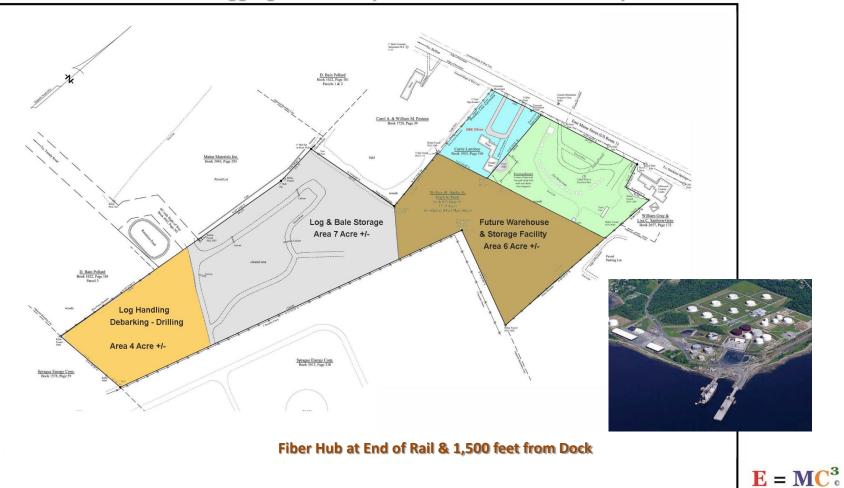
Responsibly: Transition to Rail from Trucking – Reduce GHG Dramatically

200 000 LIST ner year to Facility


Log Truck

Montreal Region, Houlton, ME, Millinocket, ME and St. John NB, CA

To: Searsport Fiber Hub


Inbound Fiber 65% to 70% - By rail to reduce truck use - reduce GHG by ~ 86%

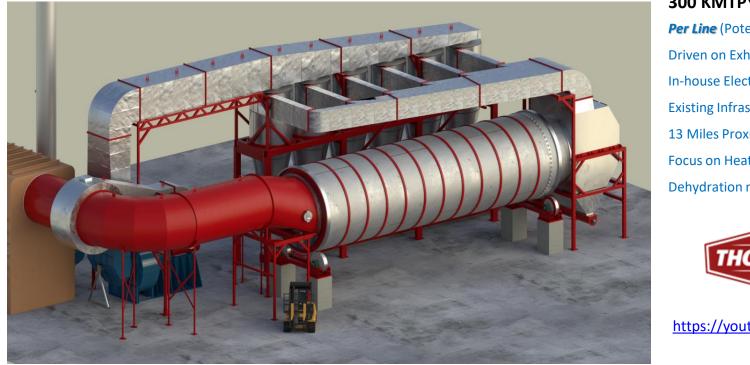
Direct by Rail to Searsport

Other Benefits of Rail:

- Rail sidings located ~ 50 miles apart
- 2.5 3 Trucks per rail car
- Truckers increase daily fiber X3
- Opens Work to Smaller Companies
- Residuals/Slash Removed Faster
- Thinning/Clearing more Efficient
- Reduced Forest Fire Hazards
- Reduced truck traffic
- Lower accident incidents
- Increase rail service (efficiencies)
- Activates rail service
- Provides Job Opportunities
- Enhances Local Economies

Secure Bankable Fiber - Aggregate, Classify, Process and Ensure Quality Assurance

4


An Example of Cost Efficiencies by Operating Fiber Hub – Aggregation Yard Production of Low Cost – Low Value Hog Fuel

Blending Material Resources to Achie			terials				terial is Phy	tos	
Products Arriving at Yard - Includes Delivery		1070	t to Yard		tended Yard	Ya	ard Collects		Blended
Costs	Available	Pe	rUSTon	0	Cost of Fiber				
Residual derived of merchantable harvests	150,000	\$	18.00	\$	2,700,000	\$	-	\$	2,700,000
Small diameter clearing from harvest operations	375,000	\$	18.00	\$	6,750,000	s		\$	6,750,000
Whole tree chips from loggers during harvests	150,000	\$	20.00	\$	3,000,000	\$		\$	3,000,000
Factory residuals, shavings and waste	6,000	\$	20.00	\$	120,000	\$		\$	120,000
Municipal waste of dead trees, roots and stumps	15,000	\$	30.00			\$	(450,000)	s	(450,000)
Tree clearing - trimming roads/power lines	10,000	\$	10.00			\$	(100,000)	\$	(100,000)
Clean hardwood crates and pallets	5,000	\$	8.00			s	(40,000)	\$	(40,000
Residential downed tree debris and waste wood	5,000	\$	15.00	\$	+	\$	(75,000)	\$	(75,000
Disaster clearing and forest fire preservation (Free	e) 5,000	\$	-	\$	-	s		\$	-
Other									
	711,000				12,570,000	\$	(665,000)	\$	11,905,000
Sampling of Materials: Research Maine 2011 - 2019 T	o produce Hog	Fuel	for Export	t i	Aver	age	Net Cost	\$	16.74

Note: With cooperation and goal sharing by Strategic Alliance Partners one can consistently achieve these low costs targets of raw fiber before processing through the Phytosanitation System.

5 EU Import requirements – Phytosanitation - accomplished with no Fossil Fuel

Since 1945 Thompson Dryers have been pioneering drying; patenting, perfecting and servicing dryer systems across many industries. Take a tour around one of our single-pass rotary drying systems. Thompson's believes equipment should work like it's supposed to and you deserve the very best solution for your drying needs.

300 KMTPY Output

Per Line (Potential for 2 lines). Driven on Exhaust Steam In-house Electric Source Existing Infrastructure 13 Miles Proximity to Port Focus on Heat per EU Mandates Dehydration not Agenda

https://youtu.be/bns2qMiKgUQ

6 Densify and Compact commodities for effective, efficient and low cost Material Handling

Final Recommended Bale Dimensions (Final dimensions meet EU transport modes, maximized container & vessel loading)

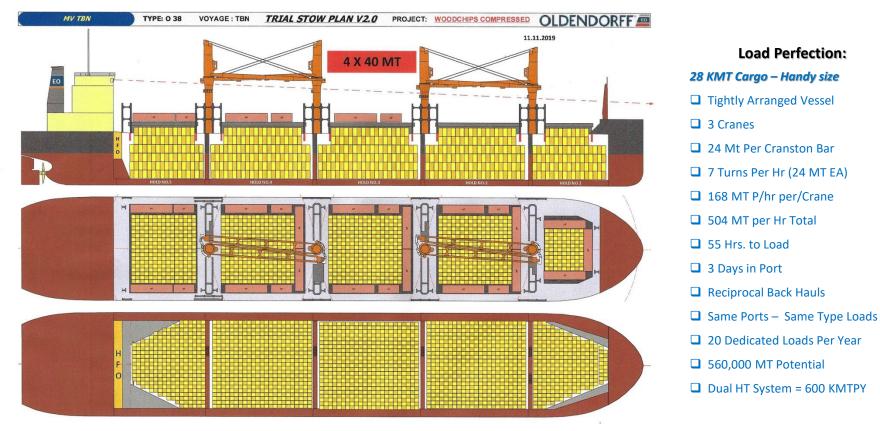
Designer Energy Chip

Hog Fuel – Biomass Fiber

The Apollo ISC Big Bale Press (BBP65) is part of our Big Bale Packaging Concept: the most efficient and flexible compressing and packing system available on the market today. The Big Bale press in itself is a compact, fully automatic installation for compressing, packing and palletizing bulk products. The Big Bale Press can be used for a wide range of compressible and cohesive products, such as peat, biomass and compost.

https://apollobv.com/products/baling-debaling/baling

Rock Solid - Perfectly Sized to Fit: Shipping Containers – No Wasted Space Tightly Arranged Vessel – handy sized 28 MMT US & EU Trucks/Rail and Transport


7 Costly Storage Buildings, Chip-Pile Management, Port Handling, Weather – Climate Exposure

8 Ocean Freight cost containment to exceed Density/Stowage Efficiency and promote Alliances

CAPT. H.VISSER PORTOPS-STA@OLDENDORFF.COM $\mathbf{E} = \mathbf{MC}^3_{\circ}$

Typical - Recommended Bale Dimensions

(working prototype)

		3' 6"		
Bale Statistics US; Width 1 42" Width 2 48" Length 72" (Lengths can be modified) Volume 84 cf Bale Lbs. 3,360 US Ton 1.68 Compressed Chip Weigth 40lbs cf	Bale Statistics Metric: Width 1 1.06 m Width 2 1.22 m Length 1.83 (Lengths can be modified) Volume 2.38 cbm Metric 3.048 Metric Ton 1.524 Compressed Chip Weigth 40lbs cf	<3' 6"> <		
c6' 0"> A. Bundle of bales is 2 bales wide and bales high. Bundles will be comprised of a bales total.	< 6' 0"> B. 1 Bundle of 4 bales is 6.1 MT		<pre><> C. US Inland Transport Sizing Width on Truck 96" (8') Height on Truck 84" (7')</pre>	D. EU Inland Transport Sizing Width on Truck 2.438 m Height on Truck 2.134 m

Final Recommended Bale Dimensions (Final dimensions meet EU transport modes, maximized container & vessel loading)

45"

- 1.) Perceived Over-Cutting or Intrusive Harvesting of forests;
- 2.) Fiber Origination procure only from Well Managed and Properly Certified forests;
- 3.) GHG Emissions Reduction: move from Carbon Intensive Trucking to Rail Transportation;

4.) Secure Bankable Fiber - Aggregate, Classify, Process and Ensure Quality Assurance;

- 5.) Meet all EU Import requirements Phytosanitation accomplished with no Fossil Fuel;
- 6.) Densify and Compact commodities for effective, efficient and low cost Material Handling;
- 7.) Costly Storage Buildings, Chip-Pile Management, Port Handling, Weather Climate Exposure;
- 8.) Ocean Freight cost containment to exceed Density/Stowage Efficiency and promote Alliances.

Fiber is derived of only residuals & waste - no harvests. 100% Fiber from Certificated Forests - ~ 10 M Acres Access Move from Truck to Rail Reduces Carbon Emissions 86% Yard Produces Below Market Costs & Guarantees Fiber Quality. Phyto System Exceeds Mandates – Focus Heat vs. Dehydrations **Densification Reduces Wood Chip Ocean Freight Cost by 45%** Eliminate Major Investment in Infrastructure – Mitigates Waste **Direct Contract Relationship with Buyers – Reduces Ocean** Freight Cost – Increased Cargo Volume – Reduced Freight Costs $\mathbf{E} = \mathbf{MC}^3$

Cumulative Sustainable and Financial Benefits from Acting Responsibly

1	2	3	4	5	6	7	8
Over Cutting - Intrusive Harvesting	Fiber Origination Forest Certification	GHG Emission Reduction - Rail	Fiber Aggregate, Process - Quality Assurance	Phytosanitation No Fossil Fuels	Densification Material Handling - Longevity	Storage Buildings, Piles, Weather - Climate	Ocean Freight Efficiencies - Alliance
No harvesting for residuals Slash removal - forest fire prevention Affiliated - Parent Co. Involved in 1 Trillion Tree Planting USA and Canada is Substantial Focus - Maine Can be Impacted	<u>Maine</u> 1.5 M A FSC 2.8 M A SFI 3.26 M A FSC & SFI <u>New Brunswick - Quebec</u> 2.8 M A Under Site Control	Overall Agenda is to Procure 70% by Rail Overall Agenda All Fiber > 75 Miles will come only on Rail Overall Agenda All Fiber < 75 Miles will come on truck GHG Carbon Reduction Approx. Increased Reliance on Rail v. Trucks	All fiber is Received, Sorted, Classified and separated Sorted for Species Natural Dried - Gj > Debarked if Required Chipped - Ground Exact Sizing - Guaranteed HT Infeed Specs. Delivered - Walking Bed JIT to Plant	HT Uses Exhaust Steam Electric In-house Focus - Heat Not Dehydration Dryer Can be set lower temp - need to heat not dehyrdrate Silo Storage & Phyto Cert Verification 8,400 Hours Yearly - 38 MT Per Hr. Per System 2 Procuction Lines Planned > 600,000 MTPY Annual Output	Compactred to > 40 Lbs. CF - 45 MT Per Hr. Per System Metric Size Bales - EU Transport Bales = 1.5 MT Each Bales bundled in 4 Units Each Approx 6 MT per Bundle 5 Bundles Per Trailer to Port Bales Sized to Efficiently Load - EU Trucking, Shipping Containers and Vessel Holds	No Storage Building at Origination Port 28 K MT Bales on 2 Acre Yard Lay down yard 1,500 FT from Quay Bundles Pre Strapped for Loading & Voyage No Storage Building at Destination Port	Strategic Alliance Global Presence Potential Dedicated Vessel 1 Vessel Could be Assigned Up to 300 KMTPY Export Potential to reach 600 KMTPY 2021 Direct Contracting - Vessel Owner and Buyer = Reduced Shipping Costs Vessel Rigging can Load and Unload 28 KMT in Approx 60 Potential Back haul - Same port to port - similar product - baled similarly.

Financial Benefits from Acting Responsibly

Example of Total Consumption from Each Product

Industrial	<u>GI/MT</u>	Forward	50	<u>SÍ MT CIF</u>		GLS	Annual MT Consumption	Annual GI Consumption			Da	shboard Stats
Wood		1 Q20	\$	164.60	\$	9.68			s	98,760,000	10,200,000	Total Gj Use
Pellets		2 Q20	s	163.60	Ś	9.62			s	98,160,000	600,000	MT Volume Use
	17	3 Q20	\$	162.10	\$	9.54	600,000	10,200,000	Ś	97,260,000	\$97,185,000	Total Procuremen
		4 Q20	\$	157.60	s	9.27			s	94,560,000	\$ 9.53	Pr Gj Cost
		2020	\$	161.98	\$	9.53			\$	97,185,000		
											% ∆	Av. % Δ
	17	2021	\$	169.10	\$	9.95	600,000	10,200,000	s	101,460,000	4.4%	2.0%
	17	2022	\$	171.10	\$	10.06	600,000	10,200,000	s	102,660,000	1.2%	2.8%
and the second sec			Conve	erted from €	e.	a an	Annual MT	Annual GI			Da	shboard Stats
Energy	<u>GI/MT</u>	Eerward	50	SI MT CIE		GIS	Consumption	Consumption				
Wood		1 Q20	\$	-	\$	1.00			\$	-	10,200,000	Total Gj Use
		2 Q 2 0	s	-	\$	-			s		809,524	MT Volume Use
Chips	12.6	the second s			1.00						A REAL PROPERTY OF A REAL PROPER	
Chips	12.6	3 Q20	\$	110.00	\$	6.47	809,524	10,200,000	\$	66,000,000	\$65,670,000	Total Procuremen
Chips	12.6		\$	110.00 108.90	\$	6.47 6.41	809,524	10,200,000	\$	66,000,000 65,340,000	and the second se	Pr Gj Cost
Chips	12.6	3 Q20	1.0		\$ \$	6.41	809,524	10,200,000	\$ \$		and the second se	Total Procuremer Pr Gj Cost
Chips	12.6	3 Q20 4 Q20	\$	108.90	s s	6.41	809,524	10,200,000	\$	65,340,000	and the second se	
Chips	12.6	3 Q20 4 Q20	\$	108.90	\$ \$ \$	6.41 6.44	809,524	-	\$	65,340,000	\$ 6.44	Pr Gj Cost

Comparison of Wood Pellet Use to Energy Wood Chip Use - MT Required and Net Gj Cost Per Unit

Financial Benefits from Acting Responsibly

Savings with Blended Consumption from Each Product

Energy Wood	<u>Gi/MT</u>	Forward.	<u>\$ GI MT CIF</u>	GIS	<u>Annual MT</u> <u>Consumption</u>	Annual GI. Consumption		Dashboard Stats 5,100,000 Total GJ Use 300,000 MT Volume Use
Chips	12.6	2020	\$ 109.45	\$ 6.44	300,000	5,100,000	\$ 32,835,000	\$32,835,000 Total Procurement \$6.44 Pr Gj Cost
Industrial Wood	<u>Gi/MT</u>	Forward	<u>\$ GI MT CIF</u>	<u>GI S</u>	<u>Annual MT</u> <u>Consumption</u>	Annual G <u>i</u> Consumption		Dashboard Stats 5,100,000 Total GJ Use 300,000 MT Volume Use
Pellets	17	2020	\$ 161.98	\$ 9.53	300,000	5,100,000	\$ 48,592,500	\$48,592,500 Total Procurement \$ 9.53 Pr Gj Cost

Combined Fiber	D	ashboard Stats	
	10,200,000	Total Gj Use	
Sourcng	600,000	MT Volume Use	
	\$81,427,500	Total Procureme	nt
	\$ 7.98	Pr Gj Cost	
Total Gj Use		Unc	hanged
Total MT increased	-	One	nanged
	500 A	C 15 7	57 500
Annual Expenditur	e reduced by	\$15,7	57,500
Net GJ Cost P/MT		5	7.98
Savings P/MT P/Gj		\$	1.54

FORWARD-LOOKING AND PREDICTIVE STATEMENTS

The representations depicted herein are based on exhaustive, multi-year cross industry disciplined research and development, primarily related to woody biomass as a sustainable source of renewable energy fiber for use in co-generation CHP facilities and in stand-alone power plants intended to rely only on biomass wood chips.

All predictions and statements, other than cited commentary derived of published or historical facts, included in this presentation that address activities, events or developments that we expect, believe or anticipate will or may occur in the future are forward-looking statements. The words "may," "estimated," "believe," "expect," "will," "anticipate," "plan," "intend," "foresee," "should," "would," "could," or other similar expressions are intended to identify forward-looking statements, which are generally predictive but, not historical in nature.

The intent here is to combine those statements with reasoned prediction – helpful in a broad, macro sense, that can point to potential alternatives to traditional thinking and allow one to fulfill market demand, address climate change issues, reinvigorate forest industry revenue, enhance local and international economies and build enduring strategic alliances globally.

THANK YOU FOR YOUR TIME AND INTEREST

We may be reached at: T. S. Laurent Forest Preservation, LLC 56 Stephenson Lane Belfast, Maine 04915

Presenter: Arthur T. House Tel: 1-207-930-5168 Email: <u>Art@ArthurHouse.com</u> Web: <u>http://www.arthurhouse.com/</u>

